1,535 research outputs found

    An illumination invariant face recognition system for access control using video

    Full text link
    Illumination and pose invariance are the most challenging aspects of face recognition. In this paper we describe a fully automatic face recognition system that uses video information to achieve illumination and pose robustness. In the proposed method, highly nonlinear manifolds of face motion are approximated using three Gaussian pose clusters. Pose robustness is achieved by comparing the corresponding pose clusters and probabilistically combining the results to derive a measure of similarity between two manifolds. Illumination is normalized on a per-pose basis. Region-based gamma intensity correction is used to correct for coarse illumination changes, while further refinement is achieved by combining a learnt linear manifold of illumination variation with constraints on face pattern distribution, derived from video. Comparative experimental evaluation is presented and the proposed method is shown to greatly outperform state-of-the-art algorithms. Consistent recognition rates of 94-100% are achieved across dramatic changes in illumination

    Reconstruction of sculpture from its profiles with unknown camera positions

    Get PDF
    Profiles of a sculpture provide rich information about its geometry, and can be used for shape recovery under known camera motion. By exploiting correspondences induced by epipolar tangents on the profiles, a successful solution to motion estimation from profiles has been developed in the special case of circular motion. The main drawbacks of using circular motion alone, namely the difficulty in adding new views and part of the object always being invisible, can be overcome by incorporating arbitrary general views of the object and registering its new profiles with the set of profiles resulted from the circular motion. In this paper, we describe a complete and practical system for producing a three-dimensional (3-D) model from uncalibrated images of an arbitrary object using its profiles alone. Experimental results on various objects are presented, demonstrating the quality of the reconstructions using the estimated motion.published_or_final_versio

    A manifold approach to face recognition from low quality video across illumination and pose using implicit super-resolution

    Full text link
    We consider the problem of matching a face in a low resolution query video sequence against a set of higher quality gallery sequences. This problem is of interest in many applications, such as law enforcement. Our main contribution is an extension of the recently proposed Generic Shape-Illumination Manifold (gSIM) framework. Specifically, (i) we show how super-resolution across pose and scale can be achieved implicitly, by off-line learning of subsampling artefacts; (ii) we use this result to propose an extension to the statistical model of the gSIM by compounding it with a hierarchy of subsampling models at multiple scales; and (iii) we describe an extensive empirical evaluation of the method on over 1300 video sequences – we first measure the degradation in performance of the original gSIM algorithm as query sequence resolution is decreased and then show that the proposed extension produces an error reduction in the mean recognition rate of over 50%

    Face recognition from face motion manifolds using robust kernel resistor-average distance

    Full text link
    In this work we consider face recognition from face motion manifolds. An information-theoretic approach with Resistor-Average Distance (RAD) as a dissimilarity measure between distributions of face images is proposed. We introduce a kernel-based algorithm that retains the simplicity of the closed-form expression for the RAD between two normal distributions, while allowing for modelling of complex, nonlinear manifolds. Additionally, it is shown how errors in the face registration process can be modelled to significantly improve recognition. Recognition performance of our method is experimentally demonstrated and shown to outperform state-of-the-art algorithms. Recognition rates of 97–100% are consistently achieved on databases of 35– 90 people

    A new look at filtering techniques for illumination invariance in automatic face recognition

    Full text link
    Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we propose a novel, general recognition framework for efficient matching of individual face images, sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. It is shown how the discrepancy between illumination conditions between novel input and the training data set can be estimated and used to weigh the contribution of two competing representations. We describe an extensive empirical evaluation of the proposed method on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our algorithm consistently demonstrated a dramatic performance improvement over traditional filtering approaches. We demonstrate a reduction of 50-75% in recognition error rates, the best performing method-filter combination correctly recognizing 96% of the individuals

    Reconstruction of Outdoor Sculptures from Silhouettes under Approximate Circular Motion of an Uncalibrated Hand-Held Camera

    Get PDF
    This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.postprin

    Reconstruction of sculpture from uncalibrated image profiles

    Get PDF
    Profiles of a sculpture provide rich information about its geometry, and can be used for model reconstruction under known camera motion. By exploiting correspondences induced by epipolar tangents on the profiles, a successful solution to motion estimation has been developed for the case of circular motion. Arbitrary general views can then be incorporated to refine the model built from circular motion.published_or_final_versio

    Colour invariants for machine face recognition

    Full text link
    Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we investigate the discriminative power of colour-based invariants in the presence of large illumination changes between training and test data, when appearance changes due to cast shadows and non-Lambertian effects are significant. Specifically, there are three main contributions: (i) we employ a more sophisticated photometric model of the camera and show how its parameters can be estimated, (ii) we derive several novel colour-based face invariants, and (iii) on a large database of video sequences we examine and evaluate the largest number of colour-based representations in the literature. Our results suggest that colour invariants do have a substantial discriminative power which may increase the robustness and accuracy of recognition from low resolution images

    Achieving illumination invariance using image filters

    Get PDF
    In this chapter we described a novel framework for automatic face recognition in the presence of varying illumination, primarily applicable to matching face sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. By performing all numerically consuming computation offline, our method both (i) retains the matching efficiency of simple image filters, but (ii) with a greatly increased robustness, as all online processing is performed in closed-form. Evaluated on a large, real-world data corpus, the proposed framework was shown to be successful in video-based recognition across a wide range of illumination, pose and face motion pattern change

    Face set classification using maximally probable mutual modes

    Full text link
    In this paper we consider face recognition from sets of face images and, in particular, recognition invariance to illumination. The main contribution is an algorithm based on the novel concept of maximally probable mutual modes (MMPM). Specifically: (i) we discuss and derive a local manifold illumination invariant and (ii) show how the invariant naturally leads to a formulation of "common modes" of two face appearance distributions. Recognition is then performed by finding the most probable mode, which is shown to be an eigenvalue problem. The effectiveness of the proposed method is demonstrated empirically on a challenging database containing the total of 700 video sequences of 100 individual
    • …
    corecore